Chapter 4: Data Types, Operators and Expressions. 101

4.3 Tokens, Identifiers, and Keywords

C++ program consists of many elements, which are identified by the compiler as tokens. Tokens sup-
ported in C++ can be categorized as keywords, variables, constants, special characters, and operators
as shown in Figure 4.1.

Tokens
l l v v v
Keywords Variables Constants Special Operators
characters
int marks, 121 #
switch age 350.75 ?
class name 2e3 ~ 2 2

Figure 4.1: C++ tokens

In a C++ program, every word can be either classified as an identifier, or a keyword. As the name
suggests, identifiers are used to identify or name variables, symbolic constants, functions, and so on.
Keywords have predefined meanings and cannot be changed by the user. The following rules need to
be followed while naming identifiers:

+ Identifier name is formed by using alphabets, digits, or underscore characters.

«+ Identifier names must begin with an alphabet or underscore character.

+ The maximum number of characters used in forming an identifier must not exceed 31 characters. Some
compilers allow the identifier length to be more than 31 characters, however, only the first 31 charac-
ters are significant.

+ C++ is case sensitive (since the upper and lower case letters are treated differently). For instance,
names such as rate, Rate, and RATE are treated as different identifiers. It is a general practice to
use lower or mixed case letters to name variables and functions, and upper case to name symbolic
constants.

+ C++ has standard identifiers called keywords. Keywords are declared by the C++ language and have
a predefined meaning. Hence, they cannot be used for any other purpose other than that specified by
the C++ language. The keywords supported by C language are shown in Table 4.2 and they are also
available in C++ (C++ is a superset of C).

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Table 4.2: Keywords common to C and C++

102 Mastering C++

C++ Specific Keywords

There are several keywords specific to C++ which are listed in Table 4.3. These keywords primarily deal
with classes, templates, and exception handling. For more details on keywords, refer to Appendix: C++
Keywords and Operators.

asm new template
catch operator this
class private throw
delete protected try
friend public virtual
inline

Table 4.3: Keywords specific to C++
4.4 Variables

A variable is an entity whose value can be changed during program execution and is known to the
program by a name. A variable definition associates a memory location to the variable name. A variable
can hold only one value at a time during the program execution. Its value can be changed during the
execution of the program. The various components associated with variables are the following:

« Data type - char, int, float, date (user defined), etc.
o Variable name - User view
« Binding address - Machine view
« Value - data stored in memory location
The relation among the above components is shown in Figure 4.2. In the statement
£f=1.8*c + 32.

the symbols £ and c are variables. .
Memory location

Variable name > @

Figure 4.2: Components of variables

A4

DataType

Variable Names

Variable names are identifiers used to name variables. They are the symbolic names assigned to the
memory locations. A variable name consists of a sequence of letters and digits, the first one being a
letter. The rules that apply to identifiers (given above), also apply to variable names. The following are
some valid variable names:

i sum MAX min
class_mark student_name emp_num fact_recur
classMark StudentName rankl _x1 _num

The following are some invalid variable names (with reasons given along side):

a’'s illegal character(")
fact recur blank not allowed
class-mark illegal character(-)
Sroot first character should be a letter

student, rec comma not allowed

Chapter 4: Data Types, Operators and Expressions 103

4.5 Data Types and Sizes

C++ supports a wide variety of data types and the programmer can select the type appropriate to the
needs of the application. However, storage representation and machine instructions to manipulate each
data type differ from machine to machine, although C+#+ instructions are identical on all machines. C++
supports the following classes of data types:

o Primary (fundamental) data types

« Derived data types

« User-defined data types

The primary data types and their extensions is the subject of this chapter. Derived data types such
as arrays and pointers, and user defined data types such as structures and classes are discussed in the
later chapters.

C++ language supports the following basic data types:

char a single byte that can hold one character.
int an integer.

float a single precision floating point number.
double a double precision floating point number.

Further, applying qualifiers to the above basic types yields additional types. A qualifier alters the
characteristics such as the size or sign of the data types. The qualifiers that alter the size are short and
long. These qualifiers are applicable to integers, and yield two more types:

short int Integer represented by 16 bits irrespective of machine type.

long int Integer represented 32 bits irrespective of machine type.

The exact sizes of these data types depend on the compiler as shown in Table 4.4.

Data Size Minimum Maximum
Data Type (?)ytgs) value value
char 1 -128 127
short 2 -327868 327867
int 2 (16 bit compiler) | -327868 327867
4 (32 bit compiler) | -2147483648 | 2147483647
long 4 -2147483648 | 2147483647
float 4 -3.4E-38 3.4E+38
double 8 -1.7E-308 1.7E+308
long doublej 10 -3.4E-4932 1.1E+4932

Table 4.4: Data types and their size

The qualifier Long can also be used along with the double precision floating point type:
long double — an extended precision floating point number.

The sign qualifiers are signed and unsigned. The sign qualifiers are applicable to the integer data
types (int, short int,and long int)resulting in six additional data types given below:

signed short int
unsigned short int
signed int
unsigned int
signed long int
unsigned long int

104 Mastering C++

Qualifiers are also applicable tc the char data type as follows:

signed char

unsigned char
Size qualifiers (short and long) cannot be applied 10 the char and float data types and sign
qualifiers (signed and unsigned) cannot be applied to float, double, and long double.

4.6 Variable Definition

A variable must be defined before using it in a program. It reserves memory required for data storage
and associates it with a symbolic name. The syntax for defining variables is shown in Figure 4.3. The
variable name can be any valid C++ identifier except the reserved words. The data type can be any
primitive or user-defined data type such as int, float, double, and so on.

Data type:
char, int, float, etc. Variable name
Data Type VarNamel,, ..., VarNameN;

Figure 4.3: Syntax of variable definition

The following are some of the valid variable definition statements:
int a; // a is an integer variable
int b, ¢, d4d; // b, ¢, and d are valid integer variables
float total, length; // total and length are valid real variables
double suml, product; // suml and product are valid double variables

Variables can be defined at the point of their usage as follows:

int c;
cout << "Hello World“;
int 4 = 10;

for(int i = 0; i < 10; i++)
cout << i;
Note that the variables d and i are defined at the point of their usage.

4.7 Variable Initialization

In C++, a variable can be assigned with a value during its definition, or during the execution of a
program. The assignment operator (=) is used in both the cases. A variable can be initialized during its
definition using any one of the following syntax:

data-type variable-name = constant-value;

data-type variable-name(constant-value);
This syntax is most commonly used since it avoids chances of using uninitialized variables leading to
runtime errors. The following statements initialize variables during their definition:

int a = 20; // or int a(20);

float ¢ = 1920.9, d = 4.5; // or float c(1920.9), d(4.5);

double g = 123455.56;

Chagter 4: Data Types, Operators and Expressions 105

The value to be initialized to a variable at the time of definition must be known while writing the
program i.e., it must be a constant value or must have been assigned at runtime before its definition as
follows:

int i = 3;

int k =1 + 3;
A variable which is initialized at its definition is called value-initialized variable. However, its value can
be modified during the program execution at a later point. When multiple variables are being declared in
a single statement, initialization is carried out in the following way:

int i = 10, j = 5;
The righ side of the assignment operator can be any valid expression as given below:

int k=1 / 3;
It assigns the value 2 to k if 1=10 and j=5.

The variables can be initialized by using any valid expression at runtime. The general format is as

follows:

variable-name = expression;
The expression can be a constant, variable name, or variables and/or constants connected by using
operators (mathematical expression). For example,

a = 10;
a = b;
a = c+d-5;

where the symbols + and - represent addition and subtraction operation respectively. The program
showl . cpp illustrates the initialization of variables in the definition or during its execution.

// showl.cpp: variable definition and assignment
#include <iostream.h>
void main()

{

int a, b; // integer type variable definition

int ¢ = 100; // variable definition and initialization
float distance; // floating-point type variable definition
// initialization during execution time

a = c;

b =c¢ + 100;

distance = 55.9;
// display contents of the variables

cout << "a = " << a << "\n";
cout << "b = " << b << "\n";
cout << e = " << ¢ << u\nn;

cout << "distance " << distance;

Run

a = 100
b = 200
c = 100

distance = 55.9

106 Mastering C++

In main (), the statement
int ¢ = 100;
defines a variable called c and initializes it with the constant integer value 100. The statement
a = ¢;
reads the contents of the variable c and assigns it to the variable a. The statement
b =c¢c + 100;
adds the contents of the variable ¢ with the numeric constant 100, and assigns the result to the variable
b. The statement
distance = 55.9;
assigns the floating-point constant value 55.9 to the variable distance. The statement
cout << "a = " << a << "\n";
displays a message a = followed by the contents of the variable a and then a newline. Input and output
operations in C++ have already been discussed in Chapter 2. For more information refer to the chapter,
Streams Computation with Console.

4.8 Characters and Character Strings

A character variable can hold a single character. For instance, the statement

char code = 'R';
assigns the character constant R to the variable code. The value stored in the variable code is the
ASCII equivalent of the character R. Note that the character constant is enclosed in a pair of single
quotes and each character representation requires 8 bits (one byte).

A sequence of characters is called a string. String constants are enclosed in double-quotes as
follows:
"Hello World"
String constants are useful while conveying some messages to the user. For instance, the statement
cout << "I love C++ programming";
displays the message indicated by the string constant as follows:
I love C++ programming
In C++, characters can be treated like integers. A character variable holds one character such as a letter,
adigit, or a punctuation mark. These characters are represented in memory by a number, called the code
for the character. For example, the code for the letter A may be 65, that for letter B may be 66, and so on.

Actually, any number can represent the letter A, any other number can be used for B and so on, but
these nurbers should be fixed by a coding convention. For example, when the computer wants the
printer to print the letter A, it actually sends the number 65 to the printer. The important point here is that
the printer accepts the number 65 and prints the letter A. Hence, the printer must also use the same code
to represent character as that is used by the computer. This requirement led to the establishment of a
standard called ASCII (American Standard Code for Information Interchange). ASCII codes are widely
used all over the world to represent various symbols in a computer.

The program ascii.cpp reads the ASCII code of a character and prints out the symbol associ-
ated with the code.

Chagter 4: Data Types, Operators and Expressions 107

, / ascii.cpp: ASCII code example
#include <iostream.h>
void main{)

int ccde;

char symbol;

cout << "Enter an ASCII ccde (0 to 127): ";
cin >> code; // reads integer value

symbol = code; // store into character variable
cout << "The symbol corresponding to * << code << " is " << symbol;

Run1i
Enter an ASCII code (0 to 127): 65
The symbol corresponding to 65 is A

Run2

Enter an ASCII code (0 to 127): 67
The symbol corresponding to 67 is C

In main (), the statement
symbol = code;
assigns the value of the integer variable code to the character variable symbol. In the output state-
ment
cout << "The symbol corresponding to " << code << " is " << symbol;
the character variable code forces cout to display the ASCII symbol corresponding to the value
stored in it.

A string in C++ is just a sequence of consecutive characters in memory, the last one being the null
character. A null character has an ASCII code O and is called the end-of-string marker in C++. For
instance, consider the following string constant:

"I love C++ programming"
In memory, it is stored as a sequence of bytes as shown in Figure 4.4. Each location holds ASCII
cquivalent of the respective character. The null character (a byte with value zero) is placed at the end of
the string. It serves to terminate the string. i.e., to mark the end of the string.
== startof string end of string-»—j
L AU v
{'Tj; Ii}ovv el’TC +
Ll . L

.)
+ p r!o g r‘a mim|iln|g w!
I

|
i

'
L

Figure 4.4: String representation in memory

4.9 Operators and Expressions

C++ operators are special characters which instruct the compiler to perform operation on some oper-
ands. Operation instructions are specified by operators, while operands can be variables, expressions,
or literal values. Some operators operate on a single operand and they are called unary operators. Some
operators are indicated before operands and they are called prefix operators. Others, indicated after the

108 Mastering C++

operand are called postfix operators. For instance, expressions ++1 or i++ use unary prefix and postfix
operators respectively. Most operators are embedded between the two operands, and they are called
infix binary operators. An expression a+b uses the binary plus operator. C++ has even an operator
that takes three operands, called a ternary operator. Unification of the operands and the operators
results in the formation of expressions.

Types of Operators

In C++, operators can be classified into various categories based on their utility and action as follows:
Arithmetic operators

Relational operators

Logical operators

Assignment operators

Increment and decrement operators

Conditional operator

Bitwise operators

Special operators

* & & 6 O ¢ o o

An expression is a combination of variables, constants and operators written according to the
syntax of the language. In C++, every expression evaluates to a value. i.e., every expression results in
some value of a valid data type, that can be assigned to a variable. The following are some of the valid
expressions:

a+b

a+200+40

c+b*z

z+20

total+20+c/3
Expressions having operands of different data types are called mixed-mode expressions. Consider the
following statements:

int a, c¢;

float 4, e;
The expression

(a+d+e+c)

is called mixed-mode expression, since it contains variables of types; integer and floating-point.

Assignment Operator =
As in most other languages, the equal (=) sign is used for assigning a value to a variable. It has the
following syntax:

variable = expression;
The left hand side has to be a variable (often called Ivalue) and the right hand side has to be a valid
expression (often called rvalue). The following are some valid assignment statements:

a = 32000; // rvalue is constant
b=z + 10 * a; // rvalue is expression
c = sqrt(20.2); // rvalue is function

The program temper . cpp illustrates the conversion of temperature value in fahrenheit to centigrade
and vice-versa using the following relation:

fahrenheit = 1.8 * centigrade + 32

Chapter 4: Data Types, Operators and Expressions 109

// temper.cpp: conversion of centigrade to fahrenheit and vice-versa
#include <iostream.h>
void main ()

{
float ¢, f;
cout << "Enter temperature in celsius: *;
cin >> c;
f=1.8*c + 32;
cout << "Equivalent fahrenheit = " << f << endl;
cout << "Enter temperature in fahrenheit: ";
cin >> £;
c = (£ - 32) / 1.8;
cout << "Equivalent celsius = " << ¢;

}

Run

Enter temperature in celsius: 5
Equivalent fahrenheit = 41

Enter temperature in fahrenheit: 40
Equivalent celsius = 4.444445

4.10 Qualifiers

Qualifiers modify the behavior of the variable type, to which they are applied. Qualifiers can be classi-
fied into two types:
o Size qualifiers
« Sign qualifiers
Consider the variable definition statement:
int i;
It specifies that i is an integer, which takes both positive and negative values. That is, i is a signed
integer by default. The above definition could also be written as:
signed int i;
Prefixing of the qualifier signedexplicitly, is unnecessary, since int data type definitions are signed
by default. If the-variable i is used to hold only positive values (for example, if it is used to hold the
number of students in a class), it can be defined as follows:
unsigned int i;
Here, the qualifier unsigned is applied to the data type int. This qualifier modifies the behavior of
the integer so that a variable of this type always contains a positive value.

int with Size Qualifiers
Size qualifiers alter the size of the basic type. There are two size qualifiers that can be applied to integers
(i.e., to the basic type int): short and long. In any ANSI C++ compiler, the sizes of short int, int
and long int have the following specification:

« The size of a short int is 16 bits.

« The size of an int must be greater than or equal to that of a short int.

« The size of a 1ong int must be greater than or equal to that of an int.

« The size of a iong int is 32 bits.

110 Mastering C++

In most compilers available on DOS, the size of ashort int and an int are the same (16 bits). A
long int occupies 32 bits. But in 32-bit compilers such as GNU C/C++, an int and a long int are
of the same size (32 bits), while ashort int is 16 bits. On the other hand, almost all UNIX compilers
have the size of int as 16 bits, int and long int being 32 bits.

sizeof operator
The operator sizeof returns the number of bytes required to represent a data type or variable. It has
the following forms:

sizeof{ data-type)

sizeof{ variable)
The data type can be standard or user defined data type. The following statements illustrate the usage
of sizeof operator:

int i, 3;

float c;

sizeof(int) returns 2 or 4 depending on compiler implementation
sizeof(float) returns 4

sizeof(long) returns 4

sizeof(i) returns 2 or 4 depending on compiler implementation
sizeof(c) returns 4

The program size.cpp determines the size of an integer and its variants. It uses the function
sizeof (), which gives the size of any data type in bytes.

// size.cpp: size qualifiers and sizeof operator

#include <iostream.h>

void main/()

{

cout << "sizeof(char) = " << sizeof(char) << endl;
cout << "sizeof(short) = " << sizeof(short) << endl;
cout << "sizeof(short int) = " << sizeof(short int) << endl;
cout << "sizeof(int) = " << sizeof(int) << endl;
cout << "sizeof(long) = " << sizeof(long) << endl; .
cout << "sizeof(long int) = " << sizeof(long int) << endl;
cout << "sizeof(float) = " << sizeof(float) << endl;
cout << "sizeof(double) = " << sizeof(double) << endl;
cout << *sizeof(long double) = " << sizeof(long double) << endl;
}
Runt

sizeof(char) =1
sizeof(short) = 2
sizeof (short int) = 2
sizeof(int) = 2

sizeof(long) = 4

sizeof(long int) = 4
cizeof(float) = 4
sizeof (double) = 8
sizeof(long double) = 10

Chapter 4: Data Types, Operators and Expressions 111

Run2

sizeof(char) =1

sizeof(short) = 2 ¢
sizeof(short int) = 2

sizeof (int) = 4

sizeof(long) = 4

sizeof(long int) = 4
sizeof(float) = 4
sizeof (double) = 8
sizeof (long double) = 10

Note: The output displayed in Run/ is generated by executing the program on the DOS system
compiled with Borland C++ compiler. Run2is generated by executing the program on the UNIX system.

The name of the variable type is passed to the sizeof operator in parentheses. The number of
bytes occupied by a variable of that type is given by the sizeof operator. The sizeof operator is
very useful in developing portable programs. It is a bad practice to assume the size of a particular type.
since its size can vary from compiler to compiler.

The sizeof operator also takes variable names and returns the size of the variable given, in bytes.

For example, the statements

int i;

cout << "The size of i is " << sizeof(i);
will output

The size of 1 is 2
The result of sizeof (int) orsizeof (i) will be the same, since i is an int. However, it is a better
practice to pass a variable name to the sizeof operator; if the data-type of i has to be changed later,
then rest of the program need not be modified.

Size qualifiers, as applied to double

The type qualifier long can also be applied on the data type double. A variable of type long
double has more precision when compared to a variable of type double. C++ provides three data
types for real numbers: float, double and long double. In any C++ compiler, the precision ofa
double is greater than or equal to that of a £1loat, and the precision of a long double is greater
than or equal to that of a double. 1.€., precision-wise,

precision of long double >= precision of double >= precision of float

To find out the actual range that a compiler offers, a program(mer) can refer to the constants defined in
the header file float.h.

Sign Qualifiers

The keywords signed and unsigned are the two sign qualificrs which inform the compiler whether
a variable can hold both negative and positive numbers, or only positive numbers. These qualifiers can
be applied to the data types int and char only. For example, an unsigned integer can be-declared as

unsigned int i;

As mentioned earlier, signed int is the same as int (i.e., int is signed by default). The char data
type can be treated as either signed char, or unsigned char, and the exact representation is
compiler dependent.

112 Mastering C++

4.11 Arithmetic Operators

The C++ language has both unary and binary arithmetic operators. Unary operators are those, which
operate on a single operand whereas, binary operators operate on two operands. The arithmetic opera-
tors can operate on any built-in data type. Arithmetic operators and their meaning are shown in Table
4.5. Note that, C++ has no operator for exponentiation. However, a function pow (x, y) exists in
math.h which returns x.

Operator Meaning
+ Addition or unary plus
- Subtraction or unary minus
* Multiplication
/ Division
%

Modulo Division

Table 4.5: Arithmetic operators

Unary Minus Operator (Negation)

The unary minus operator can be used to negate the value of a variable. It is also used to specify a
negative number; here a minus (-) sign is prefixed to the number. Consider the following examples
1. ‘int x = 5;

Yy = -X;
The value of x after negation is assigned to y i.e., y becomes -5.
2. int x = -5;

sum = ~-X;

The value of sum is +5. The unary minus operator has the effect of multiplying its operand by -1.

3. The use of unary + operator does not serve any purpose. However, it can be used as follows:
a = +100;
By default, numeric constants are assumed to be positive.

Binary Operators

Binary arithmetic operators such as +, -, *, etc., require two operands of standard data types. Depending
on the data types of the operands, these operators perform either integer or floating-point arithmetic
operation.

Integer arithmetic: When the two operands say x and y are defined as integers, any arithmetic
operatien performed on these operands is called integer arithmetic, which always yields an integer
result.

Example:
Let x and y be defined by the statement:
int x = 16, y = 5;
Then the integer arithmetic operations yield the following results:
X +y =21
Xx-y=11
X *y = 80

Chapter 4: Data Types, Operators and Expressions 113

1
w

The result is truncated, the decimal part is discarded.
The result is the remainder of the integer division. The sign of the result is
always the sign of the first operand.

X /Y
X %y

1
=

In integer division operation, the result is truncated towards the lower value if both the operands are of
the same sign, and is dependent on the machine if one of the operands is negative.

Example:

6 /8 =20

-6/ -8=0

-6 / 8 = 0 or -1 The result is machine dependent.
Floating-point arithmetic: Floating-point arithmetic involves operands of real type in decimal or
exponential notation. The floating point results are rounded off to the number of significant digits

specified, and hence the final value is only an approximation of the correct result. The remainder
operator % is not applicable to floating point operands.

Example:
Let a and b be defined by the statement
float a = 14.0, b = 4.0;

and p, g and r be floating point variables; then the floating point arithmetic operations will yield the
following results

p=a/b=3.500000
g=b / a=0.285714
r =a+ b=18.00000

Mixed mode arithmetic: In mixed mode arithmetic, if either one of the operands is real, the resultant
value is always a real value. For example, 35/ 5.0 = 7.0. Here, since 5.0 is a double constant, 35 is
converted to a double and the result is also a double

The expression
X %y
produces the remainder when x is divided by y (it returns O when y divides x exactly). The program
modulus . cpp illustrates the use of the modulus operator.

// modules.cpp: computation of remainder of division operation
#include <iostream.h>
void main ()
{
int numerator, denominator;
float result, remainder;
cout << "Enter numerator: ";
cin >> numerator;
cout << "Enter denominator: ";
cin >> denominator;
result = numerator / denominator;
remainder = numerator % denominator;
cout << numerator << "/" << denominator << " = " << result << endl;
cout << numerator << "%" << denominator << " = " << remainder;

114 Mastering C++

Run

Enter numerator: 12
Enter denominator: 5
12/5 = 2
1235 = 2

An arithmetic expression without parentheses will evaluate from left to right using the following
rules of precedence for operators:

High priority: * / %
Low priority: + -
The basic evaluation process requires two passes. During the first pass, the highest priority operators

are applied as they are encountered and in the next pass, the low priority operators are applied. Consider
the following statement:

a=b+c*5+d/2 - 3;

Whenb = 5,¢c = 2,d 10, the statement becomes
a=5+2*5+10/ 2 - 3;

It is evaluated as follows:

First pass:
step 1 a =5+ 10 + 10 / 2 - 3;
step 2: a =5+ 10 + 5 - 3;
Second pass:
step 3: a =15 + 5 - 3;
step 4: a = 20 - 3;
‘step 5: a = 17;

These evaluation steps are shown in Figure 4.5, which illustrates the hierarchy of operators. When
parentheses are used, the expression within the innermost parentheses gains highest priority.

a=b+c*5+d/2 -3
=542 %5+ 10/2 - 3 Stepl

l_¥_| lTJ f
&
10 5 Step2
15 Step3
o
20 Stepd) %
L——F_ a
a < 17 Step5

Figure 4.5: Hierarchy of operations

A program for swapping two integer numbers without using a temporary variable, is listed in
notemp . cpp. The steps involved are illustrated in Figure 4.6.

Chapter 4: Data Types, Operators and Expressions 115

a a+b;
b = a-b;
a = a—b; ‘

(a) Steps for swapping two numbers

Stepl: @ = (a + b)-

Step2: b =a-Db
(a + b) - b
a
a-»>b

Step3:
a
b

(b) Swapping steps derivations
Figure 4.6: Swapping without using temporary variable

// notemp.cpp: swapping two numbers without using temporary variable
#include <iostream.h>
void main()
{
int a, b;
cout << "Enter two integers <a, b>: ";
cin >> a >> b;
a=a+b;
b=a-b;
a=a - b;
// logic for swapping a and b ends here

cout << "Value of a and b on swapping in main(}: " << a << " " << b;
}
Run
Enter two integers <a, b>: 10 20°
value of a and b on swapping in main(): 20 10

4.12 Relational Operators

A relational operator is used to make comparisons between two expressions. All these operators are
binary and require two operands. Logically similar quantities are often compared for taking decisions.
These comparisons can be done with the help of relational operators as shown in Table 4.6. Each one of
these operators compares its left hand side operand with its right hand side operand. The whoie
expression involving the relational operator then evaluates to an integer. It evaluates to zero if the
condition is false, and non-zero value if it is true. '

116 Mastering C++

Operator | Meaning
< less than
> greater than
<= less than or equal to
>z greater than or equal to
== equal to
1= not equal to

Table 4.6: Relational operators

In order to understand the relational operators, it is necessary to know the basics of an if state-
ment. (The i f statement is elaborately discussed in the next chapter.) If condition-expression is true, it
executes the then-part only, otherwise, it evaluates the else-part, as shown below:

if(condition)

statementl; // executed when condition is true
else
statement2; // executed when condition is false

The program relation. cpp illustrates the use of the relational operators in taking decisions.

// relation.cpp: relational operator usage
#include <iostream.h>
void main()
{
int my_age, your_age;
cout << "Enter my age: ";
cin >> my_age;
cout << "Enter your age: ";
cin >> your_age;

if(my_age == your_age)
cout << "We are born in the same year.";
else

cout << "We are born in different years*;

)

Runi

Enter my age: 25

Enter your age: 25

We are born in the same year.

Run2
Enter my age: 25

Enter 'your age: 21
We are born in different years

In main (), the statement
if(my_age == your_age)
has the expression my_age == your_age as a conditional expression. It returns true if my_age

Chapter 4: Data Types, Operators and Expressions 117

and your_age are equal, otherwise it returns false. Note that 0 is tréated as false, whereas any non-
zero value is treated as true.

Note that in C++, the operator for testing equality is == (two = signs placed together). One of the

most common mistakes is to use a single = sign, to test for equality. For example, consider the statement
if (my_age = your_age)

The conditional expression evaluates to frue even if my_age and your_age are unequal (except
when your_age is equal to zero). This happens because the result of an assignment operator is the
assigned value itself. (Consider my_age is 25 and your_age is 21.) Here, the value of your_age
(25) is assigned to my_age, and the assignment expression evaluates to 25, which is non-zero. Since
any non-zero value is considered to be true, the statements following the if (then-part) are executed.

While using the relational operators, the fact whether the numbers being compared are signed or not
becomes important. Neglecting this fact can lead to hard-to-find errors. The program charl.cpp
illustrates the use of char type variables as 8-bit integers.

// charl.cpp: Using char as an 8-bit integer
#include <iostream.h>
void main()
{
// Integer value being assigned to a char
char ¢ = 255;

char d = -1:
if(¢ < 0)

cout << "c is less than 0\n";
else

cout << "¢ is not less than 0\n";
if(d < 0)

cout << "d is less than 0\n";
else

cout << "d is not less than 0\n";
if(¢c ==4da)

cout << "c and 4 are equal";
else

cout << "c and d are not equal”;

}

Run

¢ is less than 0
d is less than 0O
c and d are equal

In main (), the statement
if(¢ ==)
treats c and d as equal, although c is assigned with 255 and d is assigned with -1. It is because both of
them are treated as signed numbers by default. This can be overcome by explicitly defining variables of
fype char as signed or unsigned while using them as 8-bit integers, as illustrated in the program
char?2.cpp.

118 Mastering C++

// char2.epp: Using char as an 8-bit integer
#include <iostream.h>
void main ()
{
// Integer value being assigned to a char
unsigned char ¢ = 255;

char d = -1;
if(c<0)

cout << "c is less than 0\n";
else

cout << "c is not less than 0\n";
if(d< 0)

cout << "d is less than 0\n";
else

cout << "d is not less than 0\n";
if(¢ == 4d)

cout << "¢ and d are equal';
else

cout << "c and d are not equal";

}

Run .

c is not less than 0
d is less than 0

c and 4 are not equal

4.13 Logical Operators

Any expression that evaluates to zero denotes a FALSE logical condition, and that evaluating to non-
zero value denotes a TRUE logical condition. Logical operators are useful in combining one or more
conditions. C++ has three logical opzrators shown in Table 4.7.

Operator | Meaning
&& Logical AND
I Logical OR
! Logical NOT

Table 4.7: Logical operators

The first two operators && and Il are binary, whereas the exclamation (1) is a unary operator and is
used to negate a condition. The result of logical operations when applied to operands with all possible .
values, is shown in Table 4.§.

Logical AND: For example, consider the following expression
a >b && x == 10

The expression on the left is a > b and that on the right is x == 10. The whole expression
evaluates to true only if both expressions are true (if a is greater than b as well as x is equal to 10)

Chapter 4: Data Types, Operators and Expressions 119

T- True, F- False

operandl operand2 ~a b |a & bl a || b
a b
F F T T F F
F T T F F T
T F F T F T
T T F F T T

Table 4.8: Truth table for logical operator

Logical OR: Consider the following example involving the | | operator.

a<m]||a<n
The expression is true if one of them is true, or if both of them are true i.e., if the value of a is less than
that of m, or if it is less than n. Needless to say, it evaluates to true when a is less thanm and n.

Logical NOT: The ! (NOT) operator takes a single expression and evaluates to true if the expression
is false, and evaluates to false if the expression is zrue. In other words, it just reverses the value of the
expression. For example, consider:
(x>=y)
It has the same meaning as
X <Yy
The ! operator can be conveniently used to replace a statement such as
if(a ==0)
by the statement
if('a)
The expression ! a evaluates to true if the variable a holds zero, false otherwise.

The unary negation operator (!) has a higher precedence amongst these, followed by the logical
AND (&&) operator and then the logical OR (| |) operator, and are evaluated from left to right.

The logical operator is used to connect various conditions to determine whether a given year is a
leap year or not. A year is a leap year if it is divisible by 4 but not by 100, or that is divisible by 400. The
program leap.cpp illustrates the use of the modulus operator.

// leap.cpp: detects whether year is leap or not
#include <iostream.h>
void main ()
{
int year;
cout << "Enter any year: ";
cin >> year;
if((year % 4 == 0 && year % 100 != 0) || (year % 400 == 0))
cout << year << " is a leap year";
else
cout << year << " is not a leap year";

120 Mastering C++

Run1

Enter any year: 1996
1996 is a leap year
Run2

Enter any year: 1997
1997 is not a leap year

In main (), the statement

if((year % 4 == 0 && year % 100 != 0) || (year % 400 == 0))
can be replaced by
1f((!(year % 4) && year % 100 !=0) || !(year % 400))

4.14 Bit-wise Operators

The support of bit-wise manipulation on integer operands is useful in various applications. Table 4.9
shows the bit-wise operators supported by C++. To illustrate these operators with examples, assume
that a, b and c are defined as integer variables as follows:

int a = 13, b =7, ¢;
Consider the variables a, b, and c as 16-bit integers, and the value stored in a andb have the following
representation in the binary form:

The binary representation of a is 0000 0000 0000 1101

The binary representation of bis 0000 0000 0000 0111
(The spaces appearing after every 4 bits are only for clarity. Actualiy, the integers are merely 16 continu-
ous bits.)

Operator Meaning
& Bitwise AND
] Bitwise OR
~ Bitwise EX-OR
~ Bitwise complement
<< Shift left
>> Shift right

Table 4.9: Bit-wise operators

(i) Logical Bit-wise Operators
Logical bit-wise operators perform logical operations such as AND, OR, EX-OR, NOT between corre-
sponding bits of operands (if binary) and negation of bits (if unary).

Unary Operator : One’s Complement Operator (~)

The complement operator causes the bits of its operand to be inverted, i.e., 1 becomes 0 and 0 becomes
1. For instance, the largest possible number, which can be stored in an unsigned integer can be found
as follows. When one’s complement operator is applied on this word holding zero, all the bits will be

Chapter 4: Data Types, Operators and Expressions 121

inverted to ones and a new value becomes the largest possible number. The program large.cpp
illustrates this conversion process.

/ / large.cpp: detects largest possible unsigned integer
#include <iostream.h>

int main()

{

unsigned u = 0;

cout << "Value before conversion: " << u << endl;
u = ~u;
cout << "Value after conversion : " << u << endl;
return 0;

}

Runt

value before conversion: 0
Value after conversion : 65535

Run2

Value before conversion: 0
Value after conversion : 4294967295 *

& Runl is executed on the MS-DOS based machine using a 16-bit compiler.
Run2 is executed on the UNIX based machine using a 32-bit compiler.

Binary Logical Bit-wise Operators

There are three binary logical bit-wise operators: & (and), | (or) and (exclusive or). The operations are
carried out independently on each pair of the corresponding bits in the operands, i.e. the bit 1 of
operand]1 is logically operated with the bit 1 of operand 2. The operations using these operators are
discussed in the following sections.

Bitwise AND: The statement

c =a & b;
makes use of the bitwise AND operator. After this statement is executed, each bit in c will be 1 only if the
corresponding bits in botha and b are 1. For example, the rightmost bit of both integers is 1, and hence
the rightmost bit in c is 1. The next bitis Oina and I in b. Hence the second bit (from the right) in c is
0. Applying the same reasoning for all the bits in each one of the integers, the value of ¢ after the above
statement is executed will be 0000 0000 0000 0101 which, in decimal is 5 and is illustrated below:

Bitwise ANDoperator: a & b

a 0000 0000 0000 1101
b 0000 0000 0000 0111
a &b 0000 0000 0000 0101

Bitwise OR: The statement

c=a]| b;
makes use of the bitwise OR operator. After this statement is executed, a bit in ¢ will be 1 whenever at
least one of the corresponding bits in either a or bis 1. In the example given below, the value of ¢ will
be 0000 0000 0000 1111 i.e., decimal 15 and is illustrated below:

122 Mastering C++

Bitwise OR operator: al b

a 0000 0000 0000 1101
b 0000 0000 0000 0111
al b 0000 0000 0000 1111

Bitwise XOR: The statement
c =a " b;
makes use of the bitwise XOR operator. After this statement is executed. a bt in ¢ will be 1 whenever the

corresponding bits in a and bdiffer. So in the example given below, the value of ¢ will be 0000 0000
0000 1010 which, in decimal is 10 and is illustrated below:

Bitwise EX-OR operator:a * b

a 0000 0000 0000 1101
b 0000 0000 0000 0111
a ~ b 0000 0000 0000 1010

(if) Shift Operators
There are two shift operators in C++: left shift (<<) and right shift (>>). These are binary operators and
have the following syntax:

operand << count for left shift

operand >> count for right shift

The first operand is the value which is to be shifted. The second is the number of bits by which it is
shifted. The left shift operator moves the count number of bits to the left, whereas the right shift
operator moves the count number of bits to the right. The leftmost or the rightmost bits are shifted out
and are lost.

Left Shift Operator
Consider the statement

c = a << 3;
The value in the integer a is shifted left by three bit positions. The result is assigned to the integer c.
Since the value of a is 0000 0000 0000 1101 the value of c after the execution of the above
statement is 0000 0000 0110 1000 (104 in decimal), and is illustrated below:

Left-Shift <<

drop off 4—{ 0000 0000 0000 1101 J#— insert O's
after Left-bit shift by 3 placesi.e.,a << 3
[0000 0000 0110 1000 |

" The three leftmost bits drop off due to the left shift (i.e., they are not present in the result). Three
zeros are inserted in the right. The effect of shifting a variable to the left by one bit position is equivalent
to multiplying the value by 2. If the initial value of a is 13, shifting left by 3 bit positions yields
13*8=104.

While multiplying a number with a power of 2, considerable savings in execution time can be
achieved by using the left bit-shift operator instead of the multiplication operator, since a shift is faster
thar: multiplication.

Chapter 4: Data Types, Operators and Expressions 123

Right Shift Operator
Consider the statement
c =a > 2; 4
The value of a is shifted right by 2 positions. Since the value of a is 0000 0000 0000 1101 the
value of c after the execution of the above statement is 0000 0000 0000 0011 (3 indecimal) and

is illustrated below:
Right-Shift >>

insert 0's —»] 0000 0000 0000 1101 |~ drop off

after right shift by 2 places i.e., a >>2

0000 0000 0000 0011 |

The 2 rightmost bits drop off (are not present in the result), and zeros are inserted in the left. The
effect of shifting a variable to the right by one bit position is equivalent to dividing the value by 2 (i.e.,
divide by 2 and truncate the result). As the initial value of a is 13, shifting it right by 2 bit positions
yields the value 3 (the result of dividing 13 by 4 and truncating the result). Note that if the negaiive
number is shifted right, then 1 is inserted at the left for every bit shifted to the right.

The program extract.cpp illustrates the binary operators. It reads an integer and prints the
value of a specified bit in the integer. The position of bits are numbered starting with O from right to left.
For example, to find the value of the second bit of an integer i, it is necessary to shift i to the right by
two bits, and take the least significant digit.

;/ extract.cpp: Fishing the nth bit
#include <iostream.h>
void main()
{
// a is the input integer and n, the bit position to extract
int a, n, bit;
cout << "Enter an integer: “;
cin >> a;
‘cout << "Enter bit position to extract: ";
cin >> n;
bit = (a »>>n) & 1; // bit is the value of the bit extracted (0 or 1)
cout << "The bit is " << bit;

}

Run

Enter an integer: 10

Enter bit position to extract: 2
The bit is 1

In main (), the statement
bit = (a >> n) & 1;
first shifts a to the right by n bits and then masks (clears) all the bits of a except the least significant bit
(rightmost bit), retaining the bit which is required. Parentheses are not required in the above statement,
since the operator >> has more precedence than & (i.€., in an expression, if both >>and & are present,
the >> operator is executed first). Since this fact is not obvious, it is always bétter to-use parentheses in
such situations, for the sake of readability.

124 Mastering C++

4.15 Compound Assignment Operators

As discussed earlier, the assignment operator = (equal sign) evaluates the expression on the right and
assigns the resulting value to the variable on the left. Other forms of assignment operators exist, which
are obtained by combining operators such as +, -, *, etc., with the = sign as follows:

variable operator= expression/constant/fun:tion;

For example, expressions such as

i=1+ 10;
in which the variable i on the left hand side is repeated immediately after = sign, and can be rewritten in
the compact form as follows:

‘i += 10;
The operator += is known as compound assignment operator. Various possible compound assignment
operators are shown in Table 4.10. These operators evaluate the expression on their right, and use the
result to perform the corresponding operation on the variable on the left. Note that, only the binary
operators can be combined with the assignment operator.

Operator Usage Effect
+= a += exp; | a = a + (exp);
-= a -=exp; |a=a- (exp);
*= a *=exp; [a=a* (exp);
/= a /=exp; |a=a/ (exp);
$= a %=exp; |[a=a% (exp):
&= a &= exp; a =a & (exp);
|= a |=exp; |a=a | (exp);
~= a %= exp; | a=a" (exp);
<<= a <<= exp;| a = a << (exp);
>>= a >>= exp;{ a = a > (exp);

Table 4.10: Compound assignment operators

The statement
variable operator= expression;
is equivalent to
variable = variable operator (expression);
Hence, a statement such as
X *= y + 2;
is equivalent to
X =x* (y+ 2);
rather than
X=X *y + 2;

Chapter 4: Data Types, Operators and Expressions 125

4.16 Increment and Decrement Operators

The C++ language offers two unusual unary operators for incrementing and decrementing variables.
These are ++ and -- operators and are known as increment and decrement operators respectively.
These operators increase or decrease the value of a variable on which they operate by one. The
speciality about them is that they can be used as prefix or postfix and their meaning changes accord-
ingly. When used as a prefix, the value of the variable is incremented/decremented before being used in
the expression. But when used as a postfix, it’s value is first used in the expression and then the value
is incremented/decremented. The syntax of the operators is given below:

++VariableName

VariableName + +

--VariableName

VariableName - -
The operator ++ adds 1 to the operand and - - subtracts 1 from the operand. The prefix and postfix for
increment expressions are shown below:

++m and m++

a 0
b 10
e

a = :V \: b++;

,___//\ e
a 11 a 10
b 11 b 11
w

Figure 4.7: Prefix and postfix increment

Consider the following statements
++m;
m++;
In the above statements, it does not matter whether the increment operator is prefixed or suffixed, it will
produce the same result. However, in the following examples, it does make a difference:
int a = 0, b = 10;
The statement

a = ++b;

126 Mastering C++

is different from

a = b++;
In the first case, the value of a after the execution of this statement will be 11, since b is incremented first
and then assigned. In the second case, the value of a will be 10, since it is assigned first and then
incremented.(see Figure 4.7). The value of b in both the cases will be 11. These unary operators have a

higher precedence than the binary arithmetic operators. The increment and decrement operators can
only be applied to variables; an expression such as (i+3) ++ is illegal.

4.17 Conditional Operator (Ternary Operator)

An alternate method to using a simple if-else construct is the conditional expression operator ? ;. It is
called the ternary operator, which operates on three operands. It has the following syntax:

expressionl ? expression2 : expression3

Here the expressionl is evaluated first; if it is true, then the value of expression2 is the result; otherwise,
the expression3 is the result. The if-else construct

if(a > b)
z = a;
else
z = b;

which finds the maximum of a and b; it can be alternatively realized by using
z = (a>b) ?a: b;
Itis illustrated in Figure 4.8.

True False
4
4
7’
\ 4 ,/ ¥
expr2 /) expr3
/
4 , >
1 1] \
1 L \
1 1 1
1 ' i
'])
\\ ’
\ - /7
\ 5P z=result .
\ \ e
\ N -

e, e e -~

Figure 4.8: Ternary operation evaluation

~r

Chapter 4: Data Types, Operators and Expressions 127

The program max . cpp reads two integers and displays the value of the larger of the two numbérs
computed using the ternary operator. If they are equal, then naturally, either of them can be printed.

// max.cpp: finding the maximum using the conditional operator
#include <iostream.h>
void main()
{
int a, b, larger;
cout << "Enter two integers: ";
cin >> a >> b;
larger = a > b ? a : b;
cout << "The larger of the two is " << larger;

)
Run
Enter two integers: 10 20
The larger of the two is 20

In main (), the statement

larger = a >b ? a : b;

has three components. The conditional expression (a > b ? a : b) returnsaifa > b, otherwise
it returns b. It can be equivalently coded using the if statement as follows:

if(a>b)
larger = a;
else
larger = b;

The expressions in the ternary operator can be any valid variable, constant, or an expression. The
program oddeven. cpp checks whether the number is odd or even using the ternary operator.

// oddeven.cpp: checks whether the number is odd or even
#include <iostream.h>
void main()
{
int num;
char *str;
cout << "Enter the number: *;
cin >> num;
cout << "The number “ << num << " is “;
cout << ((num % 2) ? "0dd" : "Even");
cout << endl << "Enter the number: *;
cin >> num;
cout << "The number " << num << " is *;
(num % 2) ? cout << "0dd" : cout << "Even*;
}

Run

Enter the number: 10
The number 10 is Even
Enter the number: 25
The number 25 is Odd

128 Mastering C++

In main (), the statements

cout << ((num % 2) ? "0dd" : "Even");
(num % 2) ? cout << "0dd" : cout << "Even";

produce the same result. In the first statement, when the input value is 10, it returns the string Even,
which is passed to cout for display. The second statement executes

cout << "Even"
when the input is a even number, otherwise, it executes the first expression

cout << "0Odd"

4.18 Special Operators

Some of the special operators supported by C++ include sizeof, indirection, comma, etc. The
sizeof () operator returns the size of the data type or the variable in terms of bytes occupied in
memory, as illustrated earlier. Another class of operators is the member selection operators (. and ->)
which are used with structures and unions. The indirection and address operators * and & respectively
are explained in detail in the later chapters.

Comma Operator

A set of expressions separated by commas is a valid construct in the C++ language. It links the related
expressions together. Expressions linked using comma operator are evaluated from left to right and the
value of the rightmost expression is the result. For example, consider the following statement that makes
use of the comma operator.
i=1(j =3, 3+2);

The right hand side consists of two expressions separated by commas. The first expression is j=3 and
the second one is j+2. These expressions are evaluated from left to right. i.e., first the value 3 is
assigned to j and then the expression j+2 is evaluated, giving 5. The value of the entire comma-
separated expression is the value of the right-most expression. In the above example, the value as-
signed to i would be 5.

Some other typical situations where the comma operator can be used are the following:

1. for(int i =2, =10; ..; ..)
2.t =x, x=y,y=¢t; // exchanges x and y values

4.19 typedef Statement

The typedef statement is used to give new names to existing data types. It allows the user to declare

an identifier to represent an existing data type (with enhancement) as shown in the following syntax:
typedef type identifier;

where type refers to an existing data type and identifier refers to the new name given to the data
type. For example, the statement,

typedef unsigned long ulong,

declares ulong to be a new type, equivalent to unsigned long. It can be used just like any standard
data type in the program. For example, the statement

ulong u;

Chapter 4: Data Types, Operators and Expressions 12¢

defines u 1o he of type ulong. Also sizeof (ulong) returns the size of the new variable type in
bytes.

4.20 Promotion and Type Conversion

A mixed mode cxpression is one in which the operands are not of ‘the same type. In this case, the
operands are converted before evaluation, to maintain compatibility between data types. It can be
carried out by the compiler automatically or by the programmer explicitly.

Implicit Type Conversion

The compiler performs type conversion of data items when an expression consists of data items of
different types. This is called implicit or automatic type conversion. The rules followed by the compiler
for implicit type conversion is shown in Table 4.11.

Operandl | Operand2 Result
char int int
int long long
int float flcat
int double double
int unsigned unsigned
long double double
double float double

Table 4.11: Automatic type conversion rule table

Consider the following statements to illustrate automatic type conversion

float £ = 10.0:

int i = 0;

i=f£ 3;
In this expression, the constant 3 will be converted toa f1oat and then the floating point division will
take place, resulting in 3.33333. This (integer to float) type of conversion, where the variable of a lower
data type (which can hold lower range of values or has lower precision) is converted to a higher type
(which can hold higher range of values or has higher precision) is called promotion. But the 1value
is an integer variable, hence. the result of £ /3 will be automatically truncated to 3 and the fractional part
will be lost. This (float to integer) type of conversion, where the variable of higher type is converted to
a lower type is called demotion.

The implicit conversions thus occurring are also called silent conversions since the programmer is
not aware of these conversions. The flexibility of the C++ language, to allow mixed type conversions
implicitly. saves a lot of effort on the part of the programmer, but at times, it can give rise to bugs in the
program.

The following statement illustrates the process of type conversion:

int a, c:
long 1;

130 Mastering C++

float £;

double 4;

l1=1/a+f*d-d;
The variables a and £ are type converted to long and double respectively. The process of type
conversion leading to data promotion or demotion whil€ assigning the computed result (if necessary),
is shown in Figure 4.9.

int a;
long 1;
float £;
double d;
1 =1-/ a + f *»d - d
] 1
(‘long) (double) ‘
double

Figure 4.9: Automatic type conversion

Explicit Type Conversion
Implicit type conversions, as allowed by the C++ language, can lead to errors creeping into the program,
if adequate care is not taken. Therefore, the use of explicit type conversion is recommended in mixed
mode expressions. It is achieved by typecasting a value of a particular type, into the desired type as
follows:

(type) expression

(type) variable_name
The expression/variable is converted to the given type. Consider the expression:

(float) i+f
It rype casts the variable i of type integer to f1oat. Another syntax for type conversion, which is
specific to C++ is as follows:

type(expression)

type(variable_name)
Typecasting can also be used to convert from a higher type to a lower type. For example, if £ is a float
whose value is 2.7, the expression

int (f)
evaluates to 2. The program coerce. cpp illustrates the different ways of achieving type conversion.
// coerce.Cpp: type conversion

‘#include <iostream.h>
void main()

Chapter 4: Data Types, Operators and Expressions 131

int i, 3;
float f;
i=12;
j =5;
cout << "when i = " << i << " j = * << j << endl;
£ =173;
cout << "i/j = " << f << endl;
f = (float)i/j;
cout << "(float)i/j = " << f << endl;
f = float(i)/3;
cout << "float(i)/j = * << f << endl;
f = i/float(3j);
cout << "i/float(j) = " << f << endl;
}
Run
when 1 = 12 j =5
i/j = 2
(float)i/j = 2.4
float(i)/j = 2.4
i/float(j) = 2.4

4.21 Constants

A constant does not change its value during the entire execution of the program. They can be classified
as integer, floating point, character, and enumeration constants.

(i) Integer Constants
C++ allows to represent the integer constants in three forms. They are octal, decimal, and hexadecimal.

Octal System (Base 8): Octal numbers are specified with a leading zero, rest of the digits being
between 0 and 7. For instance, 0175 is an integer constant specified in octal whose base-10 (decimal)
value is 125.

Decimal System (Base 10): It is the most commonly used system. A number in this system is
represented by using digits 0-10. For instance, 175 is an integer constant with base 10.

Hexadecimal System (Base 16): Hexadecimal numbers are specified with 0x or Ox in the begin-
ning. The digits that follow 0x must be numbers in the range 0-9 or one of the letters a- £ or A-F. For
example, Oxal is an integer constant specified in hexadecimal whose base-10 or decimal value is 161.
0Xal is the same as Oxal, or OxAl. i.e., either a lower case or an upper case x can be used.

A size or sign qualifier can be appended at the end of the constant. The suffix u is used for
unsigned int constants, 1 for long int constants and s for signed int constants. It can be
represented either in upper case or lower case.

Examples:

1. Unsigned integer constants

56789U
56789%u

132 Mastering C++

2. Long integer constants

7689909L

76899091

0675434L (A long integer constant specified in octal).

0x34ADL (A long integer constant specified in hexadecimal).

0xf4A3L (A long integer constant in hexadecimal with upper and lower case letters).

3. The suffixes can be combined, as illustrated in the following unsigned long integer constants. The
suffixes can be specified in any order.

657889099401
6578890994ul

(ii) Floating Point Constants
Floating point constants have a decimal point, or an exponent sign, or both.

Decimal notation: Here the number is represented as a whole number, followed by a decimal point
and a fractional part. It is possible to omit digits before and after the decimal point.

Examples of valid floating point constants:
125.45 241. .976 -.71 +.5
Exponential notation: Exponential notation is useful in representing numbers whose magnitudes
are very large or very small. The exponential notation consist of a mantissa and an exponent. The
exponent is positive unless preceded by a minus sign. The number 231.78 can also be written as
0.23178e3, representing the number 0.23178*10°. The sequence of digits 23178 in this case
after the decimal point is called the mantissa, and 3 is called the exponent.

For example, the number 75000000000 can be written as 75e9 or 0.75e1l. Similarly , the
number 0.00000000045 can be written as 0.45e-9.

(i) The following examples are valid constants

2000.0434
3.4e4
3E8

(i) The following are some invalid constants.

2,000.0434 - comma not allowed.
3.4E.4 - exponent must be an integer.
3e 8 - blank not allowed.

Normalized exponential répresentation is one in which the value of the mantissa is adjusted to a
value between 0.1 and 0. 99, for example, the number 75000000000 is written as 0.75el11l

The rules governing exponential representation of the real constants are given below:

‘o The mantissa is either a real number expressed in decimal notation or an integer.
o The mantissa can be preceded by a sign.

« The exponent is an integer preceded by an optional sign.

« The letter e can be written in lowercase or uppercase.

+ Embedded white space is not allowed.

By default, real constants are assumed to be double. Suffixes f or F can be used to specify the float
values. For example, 0 .257 is assumed to be a double constant, while 0.257f is a f1oat constant.

Chapter 4: Data Types, Operators and Expressions 133

The character 1 or L can be used to specify long double values. For example, 0.257L is a long
double constant.

(iii) Character Constants
A character constant is enclosed in single quotes.
Examples: Valid character constants: 'a' 'S’ "\n'.

Invalid character constants: 'ab’ '54".
Note that multiple characters can also exist within single quotes. The compiler will not report any error.
The value of the constant however, depends upon the compiler used. This notation of having multiple
characters in single quotes is practically never used.

Inside the single quotes, a backslash character starts an escape sequence. \xhh specifies a charac-
ter constant in hexadecimal, where h is any hexadecimal digit. The hexadecimal digits hh gives the
ASCII value of the character. For example, the character constant \x07 represents the BELL character.
The complete list of escape sequences is shown in Table 4.12.

Operator Meaning
\a Beep
\b Backspace
\f Formfeed
\n Newline
\t Horizontal tab
\\ Backslash
\' Single quote
\ " Double quote
\v Vertical tab
\7? Question mark
\O Null
\Gooo Code specified in octal
\xhh Code specified in hexadecimal

Table 4.12: Escape sequences

The escape sequence \0XXX specifies a character constant in octal, where 0 denotes any octal
digit. As before, XXX is the ASCII value of the number specified in octal. For example, the ASCII code
of K is 75. The character constant \0113 specifies this character in octal. The program beep . cpp
generates the beep sound using the escape sequence. The escape sequence \x07 (can be \7) in the
cout can be replaced by \a.

/ / beep.cpp: generating beep sound
#include <iostream.h>

void main{()

{

cout << '\x07'; // computer generates sound

}

14 Mastering C++

BRun

Note: You will hear a beep sound.

Examples:

(i) cout << "\\ is a backslash."; will printas follows:
\ is a backslash.

(ii) cout << "This \" is a double gquote."; will print
This " is a double quote.

(iv) String Literals
A string literal is a sequence of characters enclosed in double quotes.The characters may be letters,
numbers, escape sequences, or blarik space. To make it easier, string constants are concatenated at
compile time. For example, the strings:

"C++ is the best" and,

"C++ is " *the best" arethe same.

An important difference: 'a' and "a"
The notations ' A' and "A" have an important difference. The first one (' A ') is a character constant,
while the second ("A") is a string constant. The notation 'A" is a constant occupying a single byte
containing the ASCII code of the character A. The notation "A" on the other hand, is a constant that
occupies two bytes, one for the ASCII code of A and the other for the null character with value 0, that
terminates all strings. The statement

char ch = 'R';
assigns ASCII code of the character R to the variable ch, whereas the statement

char *str = "Hello OOPs!";
assigns the starting address of the string Hello 0OPs! to the variable str.

4.22 Declaring Symbolic Constants—Literals

Literals are constants to which symbolic names are associated for the purpose of readability and ease
of handling. C++ provides the following three ways of defining constants:

« # define preprocessor directive

« enumerated data types

« const keyword
The keyword const is already discussed in the chapter 2. The following section discusses macros and
enumerated data types.

#define Preprocessor Directive
The preprocessor directive #def ine, associates a constant value to a symbol and is visible through-
out the module in which it is defined. The symbols defined using #define are called macros. The
syntax of #define directive is

#define SymbolName ConstantValue

Examples:
define MAX_VAR 100

Chapter 4: Data Types, Operators and Expressions 135

define PI 3.1452
define NAME "Rajkumar"
The preprocessor will replace all the macro symbols used in the program by their values before
starting the compilation operation. For instance, the statement,
area = PI * radius * radius;
is translated as,
area = 3.1452 * radius * radius;
by the processor if there exist a preprocessor directive,
#define PI 3.1452

in the program and before the statement referencing to it. The definition of macros can be superseded
by a new definition. For instance, the symbol PI can be redeclared as,

#define PI (22/7)

The program city . cpp illustrates the superseding of the value of old macro symbol by a new decla-
ration.

// city.cpp: superseding of macros
#include <iostream.h>
#define CITY "Bidar"
void which_city();
void main{()
{
cout << "Earlier City: *;
cout << CITY << endl;
#define CITY "Bangalore"
cout << "New City: ";
cout << CITY << endl;
which_city();
}
void which_city ()
{
cout << "City in Function: ";
cout << CITY;
}

Run

Earlier City: Bidar
New City: Bangalore
City in Function: Bangalore

In the above program, initially the macro constant CITY is declared with the value *“Bidar”. The

statement in the beginning of the main () function

cout << CITY << endl;
will print the message

. Bidar

as seen in the output of the program. However, the same statement at the end of main () and in the
function which_city () prints the message

Bangalore
Thus, the most recent declaration of the macro constant will supersede the earlier one. Macro constants

136 Mastering C++

behave similar to global variables except that they are visible from the point of their declaration.

The important advantages of using macro symbols include the following:

+ Program coding is easier

+ Enhances program readability

+ Program maintenance is easier

The disadvantage of macro constants is that, they do not support the specification of the data-type
in the declaration; any type of value can be assigned (either integer, float, or string).

4.23 Enumerated Data Types

An enumerated data type is a user defined type, with values ranging over a finite set of identifiers called
enumeration constants. For example,
enum color {red, blue, green};
This defines color to be of a new data type which can assume the value, red, blue,or green. Each
of these is an enumeration constant. In the program, color can be used as a new type. A variable of
type color can have any one of the three values: red, blue or green. For example, the statement
color c;
defines c to be of type color. Internally, the C++ compiler treats an enum type (such as color) as an
integer itself. The above identifiers red, blue, and green represent the integer values of 0, 1, and 2
respectively. So, the statements

c = blue;
cout << "As an int, ¢ has the value " << c;

will print
As an int, c has the value 1
Constant values can be explicitly specified for the identifiers. When the value for one identifier is
specified in this manner, the value of the next element is incremented by one (next higher integer). For
example, if the definition of color is

enum color {red = 10, blue, green = 34};
then the statement ¢ = red will assign the value 10 to c. Thereafter, the statement
c = blue;
assigns the value 11 to c, and the statement
Cc = green;
assigns the value 34 to c. (If no value is specified for green in the declaration, it would assume the /
value 12). ’

Enumeration is a convenient way to associate constant integers with meaningful names. They have
the advantage of generating the values automatically. Use of enumeration constants, in general makes
the program easier to read and change at a later date.

Names of different enumeration constants must be distinct. The following example is invalid.

enum emotion {happy, hot, cool};

enum weather (hot, cold, wet};
It is not difficult to see why the above declarations are invalid; the name hot has the value 1 in the
enum emotion and the value O in weather. In the program, if the name hot is used, there is

Chapter 4: Data Types, Operators and Expressions 137

ambiguity as to which value to use. On the other hand, values need not be distinct in the same enumera-
tion. For example. the following declaration is perfectly valid:
enum weather {hot, warm = 0, cold, wet);

The names hot and warm can be interchangeably used, since both represent the value 0.

Consider the following enumeration statement
enum flag { false, true };
It declares the identifier £1ag as an enumerated data type. It can be further used in the definition of
enumerated variables as follows:
flag flagl; // holds either false or true

In this case, the variable f1ag1l is defined as an enumerated variable of type f1ag and always holds
the value either true or false as follows:

flagl = trde:
If an attempt is made to assign any value other than t rue or false, the compiler generates a warning.
flagl = 3; // warning: trying to assign integer to flagl
Use only enumerated constants with enumerated variables. The multimodule programs colorl.cpp
and color2 .cpp illustrate some critical points on enumerated data types.

// colori.cpp: main having enum typedef and calling function from color2.cpp
#include <iostream.h>
typedef enum Color { red, green, blue }; // red = 0, green = 1, and blue = 2
void PrintColor(Color ¢);
void main()
{
cout << “Your color choice in colorl.cpp module: green” << endl;
PrintColor(green); // calls module in color2.cpp

}

// color2.cpp: prints color name based on color code
#include <iostream.h>
typedef enum Color { red, blue, green }; // red = 0, blue = 1, and green = 2
void PrintColor(Color c)
{
char *color;
switch(c)

{
case red: // case 0
color = "red";
break;
case blue: // case 1
color = "blue";
break; .
case green: // case 2
color = "green";
break;
}

cout << "Your color choice as per color2.cpp module: " << color;

138 Mastering C++

Run

Your color choice in colorl.cpp module: green
Your color choice as per color2.cpp module: blue

The modules colorl.cpp and color2.cpp must be compiled and linked together in order to
create an executable code. The command to create an executable version of these modules, in the
Borland C++ environment is:

bcc colorl.cpp color2.cpp
It creates the executable file colorl.exe.

The enumeration declaration statement in colorl.cpp
typedef enum Color {- red, green, blue };
creates three constant symbols red, green, blue with 0, 1, and 2 respectively. It can be written without
the use of typedef keyword as follows:
enum Color { red, green, blue };
An enumerated variable can be defined using the statement
Color c¢l;
although, the typedef keyword is missing. The enumeration declaration statement in color2.cpp
typedef enum Color { red, blue, green };
creates three constant symbols red, green, blue with 0, 1, and 2 respectively. Note that, the enumerated
symbol green has the value 1 in the first module colorl.cpp whereas, it has the value 2 in the module
color2.cpp. The statement in colorl.cpp
PrintColor(green); // calls module in color2.cpp
invokes the PrintColor () defined in the color2.cpp module with the enumerated symbol green
(whose'value is 1in dolorl. cpp) to pr?nt the message green. Instead it prints the message blue;
the enumeration declaration in color2 . cpp declares the symbol green having the value 2 and blue as
1. The value of symbol green in colorl.cpp is the same as that of the symbol blue incolor2. cpp.
This can be observed from the switch statement with the enumerated variable c in the color2.cpp
module. Such inconsistent enumeration declaration must be avoided, and they must have the same
declaration in all the modules constituting a program. Thus, enumeration variables can be defined in
any module, but it is defined according to the enumeration declaration in its own module. Enumerated
constants will have the same value as declared in the current module. In the above program, the module
colorl.cpp has enumeration declaration:
typedef enum Color { red, green, blue };
and the module color2.cpp has the enumeration declaration:
typedef enum Color { red, blue, green };
Note that, in the above declarations, enumeration constants green and blue will have different value
in different modules. Such mismatch in declaration will generate wrong results. Therefore, the call
PrintColor(green };
in the module colorl.cpp prints blue instead of green.

4.24 Macro Functions

The preprocessor will replace all the macro functions used in the program by their function body before
the compilation. The distinguishing feature of macro functions are that there will be no explicit function

Chapter 4: Data Types, Operators and Expressions 13¢

call during execution, since the function body is substituted at the point of macro call during compila-
tion. Thereby the runtime overhead for function linking or context-switch time is reduced. The directive
#define, indicates the start of a macro function as shown in Figure 4.10. The macro function speci-
fication spans for a maximum of one line only. However, macro function body can spread to multiple
lines if each new.line is followed by '\’ character.

——» Start of pre-processor directive indicator
—» pre-compiler (pre-processor) directive
name of the macro function

——» Macro parameters

— C++ statements performing
Macro Function Operation

e — . —— e e
4 define MacroFuncName (Parameters) Single line function body

Figure 4.10: Syntax for declaring macro function

Examples:
#define inc(a) a+l
#define add(a, b) (a+b)

The program maxmacro.cpp illustrates the use of macro function in the computation of the
maximum of two numbers.

// maxmacro.cpp: maximum of two numbers using macros
#include <iostream.h> ‘ i
tdefine max(a, b) (a>b?a : b)

void main()

{
cout << "max(2, 3) = " << max(2, 3) << endl;
cout << "max(10.2, 4.5) = " << max(10.2, 4.5) << endl;
int i = 5, j = 10;
cout << "i = " << 1 << endl;
cout << "j = " << j << endl;
cout << "On execution of k = max(++i, ++J);..." << endl;
int k = max(++1i, ++3);
cout << "i = " << i << endl;
cout << "j = " << j << endl;
cout << "k = " << k << endl;
}
Run
max{(2, 3) =3
max(10.2, 4.5) = 10.2
i=5
j = 10
An execution of k = max(++1, ++3j);...
1 =6
3 =12

k = 12

140 Mastering C++

In main (), the expressions
max{ 2, 3)
max(10.2, 4.5)
invoke the macro function max () . Unlike normal functions, macro functions can take parameters of
any data type. If arguments are in the form of expressions, they are not evaluated at the point of call, but
at the time of their usage. Thus, the statement
int k = max(++i, ++7);
1s processed by the preprocessor as follows:
int k = (++1 > ++3 2?2 ++1i : ++3);
It can be observed that, the variable with greater value, will be incremented twice. The macro function
body can spread across multiple lines as follows:
#define print(n) \
for(int i = 0; 1 < n; i++) \
cout << i;

4.25 Operator Precedence and Associativity

Every operator in C++ has a precedence associated with it. Precedence rules help in removing the
ambiguity about the order of performing operations while evaluating an expression. The associativity
of the operators is also important. Associativity specifies the direction in which the expression is
evaluated, while using a particular operator. The precedence and associativity of all the operators
including those introduced by C++ are shown in Table 4.13. It is important to note the order of prece-
dence and evaluation (associativity) of operators. Consider the following two statements:

int a = 10, b = 15, ¢ = 3, d;

d=a+b?*c;
In the second statement, first b is multiplied by ¢, and then the result is added to a and the sum is
assigned to d. Multiplication is done before addition, since it has higher precedence than the addition
operator. In order to override the precedence, braces can be used. For example, the statement

d=(a+ b) * ¢c;
would add a to b first, multiply the result by ¢ and assign the product to d. Associativity of an operator
can be from left-to-right or right-to-left. For example, in the expression

d=a-b-c;
the leftmost minus is evaluated first and then the second minus is evaluated, causing ¢ to be subtracted
from the result. Thus, in case where several operators of the same type appear in an expression without
braces, the operators are normally evaluated starting from the leftmost operator, proceeding rightward,
hence the minus operator associates from left to right. On the other hand, the assignment operator
associates from right to left. For example, in the statement

d=a-=c;

the second (right-most) assignment operator is evaluated first. The variable c is assigned to a and then
this value is assigned to d.

Like most programming languages, C++ does not specify the order in which the operands of an
operator are evaluated. Such operators are &&, | |, ?:,and ", '.) For example, in the statement such as
x =g() + h{); _
g () may be evaluated before h () or vice versa; thusif g () orh () alters a variable (global) on which
the other depends, then the resultant value of x is dependent on the order of evaluation. Similarly, the
order in which function arguments are evaluated is not specified, so the statement

Chapter 4:

Data Types, Operators and Expressions

Category

Operator

Operation

Precedence

Associativity

Highest precedence

Function cait

Array subscnpt

C++ indirect component selector
C++ scope access/resolution
C++ direct component selector

L-R
(left to right)

Unary

Logical negation (NOT)

Bitwise (1's) component

Unary plus

Unary minus

Preincrement or postincrement
Predecrement or postdecrement
Address

Indirection

(returns size of operand, in bytes)
dynamically allocates C++ storage
dynamically deallocates C++ storage

R-L
(right to left)

Member access

dereference
dereference

LR

Multiplication

Muitiply
Divide
Remainder (modulus)

LR

Additive

Binary plus
Binary minus

LR

Shift

Shift teft
Shift right

L-R

Relational

Vv AA
I

v
1

Less than

Less than or equal to
Greater than

Greater than or equal to

[.-R

Equality

Equal to
Not equal to

L->R

Bitwise AND

=

Bitwise AND

L-R

Bitwise XOR

Bitwise XOR

10

L-HR

Bitwise OR

Bitwise OR

1"

L-R

Logical AND

Logical AND

12

LR

Logical OR

Logical OR

13

LR

Conditional

(a?7x:y means "if a then x, else y")

14

I.-R

Assignment

VA= >R L+ x|
VoA I s
i

Simple assignment
Assign product
Assign quotient
Assign remainder (modulus)
Assign sum

Assign difference
Assign bitwise AND
Assign bitwise XOR
Assign bitwise OR
Assign left shift
Assign right shift

15

R-L

Comma

Evaluate

16

L-R

Table 4.13: Operator precedence and associativity

141

142 Mastering C++

add(++n, pow(2, n));
can produce different results with different compilers. However, most C++ compilers evaluate function
arguments from right to left. There are cases such as in function calls, nested assignments, increment
and decrement operators cause side effects—some variable is changed as a by-product of the evalua-
tion of the expression. The (C language and hence, C%+) standard intentionally leaves such matters
unspecified. When side effects (variable modification) take place within an expression, it is left to the
discretion of the compiler, since the best order depends strongly on the machine architecture.

The moral is that developing a code that depends on the order of evaluation, is not a good program-
ming practice in any language. Hence, it is necessary to know what'to avoid, but if it is not known how
they are treated, the programmer should not be tempted to take advantage of a particular implementa-
tion.

Review Questions

4.1 What are variables ? List C++ rules for variable naming.
4.2 Why output and Output are considered as different identifiers ?
4.3 What are keywords ? List keywords specific to C++. Can these keywords be used as variables ?
4.4 What isa data type ? What are the different data types supported by C++ ?
4.6 What is new about C++ in terms of the variable definition ?
4.7 What is the difference between a character and a character string representation ?
4.8 What is anexpression ? Is this different from a statement ? Give reasons.
4.9 List categories of operators supported by C++.
4.10 What are qualifiers ? Illustrate them with examples.
4.11 Develop an interactive program to compute simple and compound interest.
4.12 List evaluation steps for the expression (a+ (b*c)) *c+d/2.
4.13 Write an interactive program to find the largest of two numbers.
4.14 How C++ represents true and false values ? Are the expressions !a and a==0 have the same
meaning ? Give reasons.
4.15 Write a program to determine the type of compiler (whether 16 or 32-bit) used to compile it.
4.16 Write a program to multiply and divide a given number by 2 without using * and / operators.
4.17 Tllustrate how compound assignment operators allow to write compact expressions ?.
4.18 What is the effect of the following expressions if i=1 and j=4 7
a) i++ b) j = j++; c) j = ++3; d) i+++] e) 1 = 1+++++73;
4.19 Write an interactive program to find elder among you and me using the ternary operator.
4.20 What is the outcome of the statement: a= (a=10, a++, a--) ; if a holds the value 5 initially.
4.21 What is type conversion ? What are the differences between silent and explicit type conversion?
Write type conversion steps required for evaluating the statement:
z=i+b+j-k/4; (whereiandjare ints,bis float, and k is double, and z is long type).
4.22 What are escape sequences ? Write a program to output messages in double quotes.'
4.23 What are macros ? Write a program to find thc minimum of two numbers using macros. What is the
output of the statement: a = min(++a, ++b); (iffa=2andb=4)
4.24 What is operator precedence ? Arrange the following operators in the order of their precedence:
o+ O, 4+ = | | & /,and &&
4.25 What is the significance of the associativity of operators ? What is the order of evaiuation of the
operator ? : in the statement
a= i>732i: 3;

5

Control Flow

5.1 Introduction

In real-world, several activities are initiated (sequenced), or repeated based on some decisions. Such
- activities can be programmed by specifying the order in which computations are carried out. Flow
control is the way a program causes the flow of execution to advance and branch based on changes in
the data state. Branching, iteration, dispatch, and function calls are all different forms of flow control.
Flow control in C++ is nearly identical to those in C. Many C programs can be converted quite easily to
C++ because of this similarity. The C++ language offers a number of control flow statements: for,
while, do-while, if-else, else-if, switch, goto. Although all of them can perform opera-
tions such as looping or branching, each one of them is convenient for a particular requirement. The
control flow statements can be broadly categorized as, branching and looping statements.

Branching Statements

Branching statements alter sequential execution of program statements. Following are the branching
statements supported by C++:

(a) 1f statement

(b) if-else statement

(¢c) switch statement

(d) goto statement

Among all the above statements, goto is the only unconditional branching statement.

Looping Statements
Loops cause a section of code to be executed repeatedly until a termination condition is met. The
following are the looping statements supported in C++:

(a) for statement

(b) while statement

(¢) do-while statement

The goto statement can be used for looping, but its use is generally avoided as it leads to haphazard
code and also increases the chances of error.

5.2 Statements and Block

An expression such as a = 1000, x++, or cout << "Hi", when followed by the semicolon,
becomes a statement. For example, the following

a = 1000;

X++;

cout << "Hi*;

144 Mastering C++

are treated as C++ statements. In C++, the semicolon is a statement terminator, rather than a separator as
in Pascal.

C++ allows grouping of statements, which have to be treated as an entity and the resulting group is
called compound statement or block. It consists of declarations, definitions, and statements enclosed
within braces { and } as follows:

{

int a;
int b = 10;
a=>b + 100;

}

Note that, there is no semicolon after the right brace that ends a block. A block is syntactically
equivalent to a single statement. Any variable defined within a block is local to the block and it is not
visible outside the block. Blocks are very useful when branching or looping action is to be applied on
a set of statements depending on a particular decision. Examples illustrating the use of a block will be
discussed later.

5.3 if Statement

The if construct is a powerful decision making statement which is used to control the sequence of the
execution of statements. It alters the sequential execution using the following syntax:
if(test-expression)
statement;
The test-expression should always be enclosed in parentheses. If test-expression is true (nonzero),
then the statement immediately following it is executed. Otherwise, control passes to the next statement
following the i f construct. The control flow in the i f statement is shown in Figure 5.1.

false ,-==~~<, ..., .-~ lrue
; if (. 'expression :) '
¢ .
]
v e ‘r
\ . .
\ R, .——
\) "
Mstatement ; 4~ - -~

Figure 5.1: Control flow in if statement

Notice that there is no then keyword following the test expression, as there is in BASIC and Pascal.
The program agel . cpp illustrates the use of if statement for making a decision.

// agel.cpp: use of if statement
#include <iostream.h>
void main()
{
int age;
cout << "Enter your age: ";
cin >> age;
if(age > 12 && age < 20)
cout << "you are a teen-aged person. good!";

Chapter 5: Control Flow 145

Runi
Enter your age: 15
you are a teen-aged person. good!

Run2

Enter your age:-20

In main (), the statement
if(age > 12 && age < 20)
first evaluates the test expression and executes the if-part only when it is true. In Runl, the input data
entered is 15 which lies between 13 and 19 and hence, the statement

cout << "you are a teen-agéd person. good!";
gets executed. Whereas, in Run2, the input data is 20 which does not lie within this range and hence, the
control proceeds to the next statement.

Compound Statement with if
In the if construct, the if-part can be represented by a compound statement as follows:
if(test-expression)
.
statement I;
statement 2;

}
In this case, when test-expression is true, the statements enclosed within the curly braces, representing
a compound statement, are executed. The program age2 . cpp illustrates the use of the compound-if
statement.

// age2.cpp: use of if statement and data validation
#include <iostream.h>
void main()
{
int age;
cout << "Enter your age: ";
cin >> age;
if(age < 0)
{
cout << "I am sorry!" << endl;
cout << "age can never be negative";
return; // terminate program
}
if(age > 12 && age < 20)
cout << "you are a teen-aged person. good!";

}

BRun

Enter your age: z10

I am sorry!

age can never be negative

146 Mastering C++

In main (), the statement
if(age < 0)
validates the input data and accordingly takes action. It terminates the program after issuing the warn-
ing message, when the input data is negative.

The program large . cpp illustrates the use of multiple decision statements to compute the maxi-
mum of three numbers.

// large.cpp: find the largest of three numbers
#include <iostream.h>
void main()
{
float a, b, ¢, big:;
cout << "Enter three floating-point numbers: *;
cin >> a >> b >> ¢;
// computing the largest of three numbers

big = a;
if(b > big)
big = b;
if(c > big)
big = c¢;
cout << "Largest of the three numbers = " << big;
}
Bun

Enter three floating-point numbers: 10,2 15.6 12.8
Largest of the three numbers = 15.6

5.4 if-else Statement

The if-else statement will execute a single statement or a group of statements, when the test
expression is true. It does nothing when the test expression fails. C++ provides the i £-else construct
to perform some action even when the test expression fails. The control flow in the i f -e1se statement

is shown in Figure 5.2.
eniry— A
......... . > false
A}

if (: expression) \
T o\ \
{ e \ \
A’ true)
.]
............... - !
} \\\ ll
else SO
{ i
................ «--"
: ,
‘\ 4
} r”

statement; 4=°

Figure 5.2: Control flow in if-else condition

Chapter 5: Control Flow 147

When test-expression is true (nonzero), the if-part is executed and control passes to the next state-
ment following the if construct. Otherwise, the else-part is executed and control passes to the next
statement. The program age3.cpp illustrates the use of the if-else statement.

// aged.cpp: use of if..else statement
#include <iostream.h>
void main()
{
int age;
cout << "Enter your age: ";
cin >> age;
if(age > 12 && age < 20)
cout << "you are a teen-aged person. good!";
else
cout << "you are not a teen-aged person.";

}

Runi

Enter your age: 15

you are a teen-aged person. good!
Run2

Enter your age: 20
you are not a teen-aged person.

In main (), the statement
if(age > 12 && age < 20)
generates different types of output depending on the input values. If the test expression is true, the
statement
cout << "you are a teen-aged person. good!";
is executed. Otherwise, the statement
cout << "you are not a teen-aged person.";

in the else-part is executed.

Compound Statement with if-else
In the i £ -else construct, the if-part, or else-part, or both can have a compound statement as follows:
ifi test-expression)

{
statement I;
statement 2;

}

else

{

statement 3;
statement 4;

}

The program lived.cpp illustrates the use of the compound if-else statements.

148 Mastering C++

// lived.cpp: single if statement validates input data
#include <iostream.h>
void. main()

{
float years, secs;
cout << "Enter your age in years: ";
cin >> years;
if(years < 0)
cout << "I am sorry! age can never be negative" << endl;
else
{
secs = years * 365 * 24 * 60 * 60;
cout << "You have lived for * << secs << " seconds"; ’
}
}
Runi

Enter your age in years: -1
I am sorry! age can never be negative

Run2

Enter your age in years: 25
You have lived for 7.884e+08 seconds

5.5 Nested iféelse Statements

Multi-way decisions arise when there are multiple conditions and different actions to be taken under
each condition. A multi-way decision can be written by using i f-else constructs in the else-part as
follows:

if test-expressionl)
statementl;
else
ifl test-expression2’)
statement2;
else
if(test-expression3)
statement3;

Here, if test-expressionl is true, the whole chain is terminated. Only if test-expression] is found false,
the chain of events continue. At any stage if an expression is true, the remaining chain will be termi-
nated. The program aged . cpp illustrates the use of nested if-else statements.

// aged.cpp: use of if..else..if statement
#include <iostream.h>
void-main ()
{
int age;
cout << "Enter your age: ";
cin >> age;
if(age > 12 && age < 20)

Chapter 5: Control Flow 149

cout << "you are a teen-aged person. good!";
else
if(age < 13)
cout << "you will surely reach teen-age.";
else
cout << "you have crossed teen-age!";
Runi

Enter your age: 16
you are a teen-aged person. good!

Run2
Enter your age: 25
you have crossed teen-age!

In the above program, the nested if-else statement takes decisions based on the input data and
displays appropriate messages for any given input. It proceeds to match the input data with various
conditions when the earlier condition fails to decide the fate of the input data. Note that in case of
nested if-else statements, the else statement is always associated with the corresponding inner most
if statement.

Indentation

In all the above examples, the statements inside the if construct are indented. The C++ language,
however, does not expect indentation of statements. It is done merely for improving program readability.
The importance of indenting becomes evident during the usage of nested if statements (if statements
within other if statements; any number of nested-if statements are allowed). For example, consider the
following if statement

if(a>b) if(.a > c) big = a;

else big = c;
The above statement is perfectly valid as far as the compiler is concerned, but it is very difficult for the
programmer to decipher it. An indented version of this is listed below:

if(a>b)
if(a>c)
big = a;
else
big = c¢;

From the above code it can be observed that, indentation enhances the readability of the code and
helps in understanding the flow of control with ease.

Nested if-else statements can be conveniently replaced by a new construct called switch. It
allows to choose among several alternatives; it is.dealt later in this chapter.

5.6 for Loop

The for loop is useful while executing a statement a fixed number of times. Even here, more than one
statement can be enclosed in curly braces to form a compound statement. The control flow in the for
loop is shown in Figure 5.3. '

150 Mastering C++

entry
l TP s L W K. TN, '
for (rinitialization -; ! condition :;' updation)
(T .‘;" AAAAA “\l PO .
................. e ' false '
l' ”/
, .-
A S R
} -

Figure 5.3: Control flow in for loop

The for statement is a compact way to express a loop. All the four parts of a loop are in close
proximity with the for statement. The initialization part is executed only once. Next the test condi-
tion is evaluated. If the test evaluates to false, then the next statement after the for loop is executed. If
the test expression evaluates to true, then after executing the body of the loop, the update part is
executed. The test is evaluated again and the whole process is repeated as long as the test expression
evaluates to true as illustrated in the program countl.cpp.

// countl.cpp: display numbers 1..N using for loop
#include <iostream.h>
void main()

{
int n;
cout << "How many integers to be displayed: ";
cin >> n;
for(int 1 = 0; 1 < n; i++
cout << 1 << endl;
}
Bun

How many integers to be displayed: 5

B> W N O

"In main (), the statement
for(int i = 0; i < n; i++)
cout << i << endl;

has four components. The first three components enclosed in round braces and separated by semico-
lons are the following:

int 1 =0

1 <n

i++)
The first component int i = 0 is called the initialization expression and is executed only once prior
to the statements within the for loop. The second component 1 < n is called the test expression and

